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QUASI-STATIC TRANSIENT THERMAL STRESSES
IN AN INFINITE WEDGE*

R. A. Lucast and F. ERDOGAN]

Abstract—The plane transient thermoelastic problem for an infinite wedge subjected to an instantaneous
heat source at an arbitrary location is considered. The problem is formulated in terms of displacements and
Mellin—Laplace transforms are used for the solution. A real integral representation of the stress field is given.
The main emphasis is placed on the analysis of the singular behavior of stresses around the apex for large values
of the wedge angle, 28. It is found that in the symmetric case for § > #/2 and in the antisymmetric case for
B > 0-715n the apex is a point of singularity for the stresses. The power of this singularity as well as the variation
of the stresses in # and that of the stress intensity factor in time is studied and some numerical results are given.

NOTATION
A A, stress intensity factors
E,v,2,u elastic constants
k coefficient of heat conduction
k* = o34+ 2y)
k, = 2n+)r/2p
ky = (n+1)m/B
p Mellin parameter
do intensity of the heat source
r,0,z1t space and time coordinates
r,o location of the heat source
s Laplace parameter
T temperature
u, v r, 8-components of displacement vector
o coefficient of thermal expansion
B half-wedge angle
K thermal diffusivity
PRVE poles in p-plane
W= Bﬁa E°v) (in figures)

1. INTRODUCTION

ExISTING solutions of transient thermoelastic problems are, for the most part, relatively
recent in origin. Among the notable solutions we may mention those given by Melan [1]
for quenching of a uniformly heated sphere, Sternberg [2] for the infinite medium with
a spherical cavity, Bailey [3] for the half-space subjected to a sudden change in temperature
on a circular portion of its plane boundary, Jaunzemis and Sternberg [4] for the semi-
infinite slab subjected to a sudden change in temperature on a finite segment of its edge,
and Youngdahl and Sternberg [5] for an infinitely long elastic circular shaft subjected
to a sudden change in surface temperature along a finite band. Under steady tempera-
ture fields, a certain degeneracy in the stresses exists if the medium is simply-connected.

* The results presented in this paper were obtained in the course of research supported by the National
Science Foundation under the grant GP-3200.

t Department of Mechanical Engineering, Lehigh University.
1 Department of Mechanics, Lehigh University, Bethlehem, Pennsylvania.
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For example, the body is stress-free if the problem is two-dimensional {6, 7] and, in a
three-dimensional problem for the half-space under given thermal boundary conditions
on its plane surface, the stress field is plane and parallel to the boundary [8, 9]

In muitiply-connected domains under steady temperature fields, even though the
solutions are few, the existence of thermal stresses are well known [e.g. 6, 10] In the case
of infinite media subjected to one-dimensional uniform heat flow disturbed by the exist-
ence of insulated holes or cracks, thermal stresses develop in the neighborhood of cavities
and have the same singular character as those induced by mechanical disturbances
[11-14]

In the literature, there appears to be a lack of information concerning the singular
behavior of thermal stresses in media containing sharp notches and undergoing transient
temperature fields. Hence, the primary objective of this paper will be the study of thermal
stresses, particularly their behavior in the vicinity of the points of singularity, in a con-
figuration simple enough to lend itself to tractable analysis and general enough to have
some practical applications. The infinite plane wedge of an arbitrary angle under z-
independent temperature field is selected to be such a configuration. The thermal stress
problem of a plane wedge under steady temperature fields was studied by Piechocki
and Zorski [15] and by Piechocki [16] In [15] a plane wedge of an arbitrary angle,
clamped along the straight edges and subjected to time-independent temperature boun-
dary conditions is considered. The solution is given in terms of Mellin inversion integrals
and contains no discussion of the behavior of stresses—singular or otherwise. [16] con-
siders a plane wedge with stress-free boundaries subjected to a steady-state, z-independent
heat source at an arbitrary point in x-y plane. The straight edges of the wedge are held
at zero temperature. The results include the stresses in a quarter plane given in terms
of improper integrals-and those for a half plane which agree with the expressions found
in [7]. However the limitation of the solution obtained in [16] is that it applies only
to those wedges with angles less than = ; hence, the heat source is the only point of singu-
larity for stresses.

In what follows we consider a wedge of an arbitrary angle with stress-free boundaries
which is subjected to a heat pulse at an arbitrary location. The problem may either be
one of plane strain, in which case the source strength is assumed to be independent of
z, or it may be one of generalized plane stress, where it is assumed that the plane boun-
daries, z = F h/2, are thermally insulated, i being the thickness. Since the main objective
of the paper is to provide the necessary Green’s functions to be used in the analysis of
wedges with time-varying heat generation (or surface heating, in the case of thin plates)
and since the time rates in such cases are usually small compared to velocities of stress
waves, the present analysis is restricted to the quasi-static case, that is, the inertia effects
are ignored. Recent studies on dynamic thermoelasticity seem to bear out the validity
of this assumption [5, 10,17, 18], Strictly speaking, because of the stress-free bounding
surfaces of the wedge, in the neighborhood of the apex, the behavior of dynamic stresses
may be quite different to those obtained on the basis of quasi-static assumption. How-
ever; the difference will be in the time-dependent stress intensity factors rather than
the strength of the stress singularities, Moreover, this difference may be significant only
if the time rate of change of temperature boundary conditions or thermal loading is
extremely high* Hence, if one may judge on the basis of available though limited

* For example, a ramp duration of less than 10712 sec in ramp-type heating of a semi-infinite steel medium

[17}
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numerical work [17, 18], under physically realistic conditions, the error in stresses and
displacements which results from ignoring the inertia effects may be assumed to be
negligible.

Largely for mathematical expediency, also ignored are the effect of temperature on
the thermoelastic constants along with the thermoelastic coupling and the anelastic
behavior of the material.

To avoid the solution of another boundary-value problem, a formulation directly
in terms of displacements rather than a displacement potential is used.

2. FORMULATION OF THE PROBLEM

In a quasi-static plane strain problem with z-independent temperature and stress
fields, the heat conduction and the equilibrium equations may be written as

#T 10T 18T g 13T

i ratr etk v w )
a
G2y e 2 ‘3-“3~~(3A+2y)a_7l =0
or r
1oe _ do, o 0T @
(420 25+ 20~ (BA+ 2% 25 = 0

where k is the coefficient of heat conduction, g is the heat generated in unit volume and
unit time, « is the coefficient of diffusivity. A and u are Lamé’s constants, « is the co-
efficient of linear thermal expansion, T is the temperature and the dilatation ¢ and the
rotation w, are given in terms of r and # components of the displacements » and v as

follows:
_ arw) (6(1'1:) 8;1)
ror +r56 @z = 2r\ ar a6 3)

Consider now an infinite wedge, r > 0, —f§ < 6 < f, with zero-initial temperature
and stresses and subjected to an instantaneous heat source att =0, r=r"and § = §.
To obtain the stress distribution (1) and (2) will have to be solved subject to the following
initial and boundary conditions:

T(r8,1)=0, t<0
T(r,0,t) = 0, 0= +8, t>0 @)

qr,0,1t) = q0~1-6(r —1)8(0 —8)o(t — 1)
r

oyr,0,1) = 0, t<0, (,j=r0
oelr, 6,1) = 0, 6,r,0,8) =0, 6= +p1t>0

where g, is the intensity of the heat source (BTU per unit thickness).
The solution of (1) subject to (4), with the wedge angle taken as 0 < 6 < §,, was
obtained by Carslaw and Jaeger [19], which, after performing the integration [20, p. 395],

&)
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may be written as

r+ r’2> . )
— - —— I IR 4
T(r, 0,9 8, nZ ( ae ko) sin 56 sin s

nn
§ = —
B0

(6)

Expressing (6) in the wedge —f < 8 < f§ and dividing it into symmetric and anti-
symmetric components, T; and T, corresponding to heat sources gp/2 atr =1, 0 = +8
and go/2 atr =1, 0 =6 and —qy/2 atr = r, § = — &, respectively, we obtain

2 72 o0 /
4o re+r g
T, = S xp( )ng ( )cosk()cosk@

= (2n+ Dn/2p.

2 s2
G _r +7 >
L= 2kt exp( 4t

k, = (n+1)n/B.

0]

I (2—’> sin k, sin k,8,

s

®)

To solve (2) we will use successively Mellin-Laplace transformations in variables
r and t. For a given suitably well-behaved function f(r, t) the Mellin-Laplace transform
pairs are formally defined as

f(p, s} = Jw e~ d!jOo flr,r?~t dr
0 0
e+ ioo y+io (9)
i 1 A
fir,t) = — r Pdp— S, s)e” ds.
2ni i 2mi

y—io

Taking into account the initial conditions, assuming that within the strip of regularity
containing the Bromwitch line of the Mellin inversion integral the functions 7, u and v
are such that

du ou v v
pT pp—1 P77 wp— 177 up—ly wp " ap—1 7
r’T, r u,rarr 69r v,rarr gy -0
(10)
as
r—0 and r— oo
and integrating by parts, from (2) and (3) we obtain
d*u do
d92+Bld6+Bzu+B3T 0
4% di dT ()
u
d92+B4d9 Bsp— Bﬁde 0

where T, i, § are, respectively, the Mellin-Laplace transforms of T, »~ '« and r~'v and
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the constants are given by

A A k*
B,= —2-Zptp,  By=Tp(p-2, By=-2L
U I 1
7 I k*
B = 2 —P— P B = — —_ , foe R —
4 +AP p 5 AP(P 2) By 1 (12)
A=24+2u, k* = 34+ 2

Using the stress displacement relations of thermoelasticity in cylindrical coordinates
and integrating by parts, the Mellin-Laplace transforms of stresses may be obtained as

a

do - "
— Y —*
,,—A(u+d9) —A(p— Dii—k*T
df N
6o = Alii+ 2 )~ Up—Di— kT (13)
_ dit 5)
"9—- de p

Thus the differential equations (11) will be subject to following boundary conditions:

Qo

A(§+d”) —Mp-Vi—-k*T=0, 6= +8

de 4
dii_ 6=0 6=+8
g~ =% T E

Finally defining
2 ” 1 r +r’2> rr
= s r-ld 15
.9 L ¢ dtj It © p( 4kt I (2xt>r " (15)

The Mellin-Laplace transforms of symmetric and anti-symmetric temperature fields, (7),
become

T =‘_113_ > F, cosk,0 cosk6, k, = (2n+ /2B

" (16)
T, = % Fi sink,0 sink,0,  k, = (n+ /B,

n=0

Throughout the paper the interchange of summation and integration is assumed to be
permissible. Although complete rigor would require its justification at each step, this is
inferred with knowledge that the summation occurs through the assumed temperature
distribution, which is uniformly convergent for all values of time exceptat r =7, 6 =6
fort=0.
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3. SOLUTION IN TERMS OF INFINITE INTEGRALS

First consider the symmetric case. Substituting T= ﬁ from (16) and using the
boundary conditions, (14}, after some aigebra, the solution of (11) may be obtained as

Gok* )0_% ((p—2)ﬁkl cos k.8 cos k,0
B4 =% ki—(p-2)

(—1yk,F, cosk,&
! -2 -2
T (o= 2716, ) [(p ) cos pf cos(p=2)0

2u ‘
- (p +A_+7l) cos(p —2)f cos p9]>

gok* ;2 (klf}l cos k0 sin k,0
BA <o ki —(p—2)?

ﬁ:

=

(— 17k, F,, cos k.0 _
(K~ —2716(7. B [(" ~2)cos phsinlp =26

24 .
— (p _m) cos{p—2)B sin p@]),

ky = (2n+ Dn/28,
Glp, B) = (p—1)sin 2 +sin 2(p— 1)p. an

Observing that in (17) Laplace parameter s appears only through F «{p,s), Laplace
inversions of (17), i.e., the Mellin transforms of displacements, u, v, are obtained by simply

replacing ﬁkl by F,,, which is given by

_ | r2+r’2) (rr’)
Fpt)=| ——exp|l——rt )1, (I}t ar 18
P ) So 2kt exp( dxt ) \2xt r ! (18)

Using (13) the Mellin transforms of the stresses may then be written as

- qoEa F,, cos k.0’
1 1 . kl _1 2 )
O = B—v) .5 G I =271~ V= D+

.cos{p—2)p cos pf—(—1Vk(p— 1){p—2) cos pB cos(p—2)6
~G(p, P)(k} +p—2)cos k, 0],

__ goEx & F, cos k.0 P

. cos pB cos(p—2)0—(~1)*ky(p— 1) (p— 2) cos(p — 2)B cos p8 (19)
+G(p, B(p—1(p—2) cos k,0],
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- qoEa & F,. cos k.0
G = ! -1k -1).
"= B % G A~ =27 kape =)
. cos(p—2)B sin p@ —(— 1Yk,(p— 1)(p—2) cos pB sin(p — 2)0
= G(p, B)k,(p— 1) sin k,0],
= (2n+ )n/28.

The stresses are obtained by using the Mellin inversion theorem:

c+iwo
oir,0,t) = ZI_IJ 6:(p, 0, t)r" P dp, i,j=r0). (20)
Equation (19) indicates that, since the Mellin inversion of F, is known, by writing
6ij(p, 99 t) = Z Fkl(pa t)fijn(p, 6)3 (ls.] =T, 6) (21)
n=0
the stresses may be obtained as infinite series of convolution integrals:
® @© d
o6 =Y, j Fkl(i, t)ri,-,(x, 0)— (22)
n=0Jg X * x
where
1 r2+ r’2) rr')
= - — 23
Fulrnt =54 e"p( et ) o\ 3 @

and 1, (,j =r,0; n =0,1,2,...) are the inversions of 7, which are the coefficients of
F,, in (19).

The solutions 6;; or 7;;, are not affected by the particular choice of ¢ in inversion if
the line of mtegratxon in p plane is varied within the same strip of regularity common
to all integrands. The appropriate strip of regularity in turn is dictated by the conditions
(10). From a close examination of 4,,, 64 and &, it can be shown that within the strip
1 < Re(p) < 3 the functions are regular and a choice of ¢ in this strip, say ¢ = 1, complies
with conditions (10).

To evaluate 7;;, one may use the residue theorem by completing the contour in the
half planes Re(p) > 1 for r > 1 and Re(p) < 1 for r < 1. The only difficulty in following
this procedure lies in the evaluation of the poles of 7;;,(p).

Taking the line of integration at ¢ = 1 and writing p = 1+iy, 7,;, may also be expressed
in terms of real integrals as follows:

qoEx cos k.0 [©
“mj‘o {( 1)yk lN, - [(2k3y—2y+2y%).

M
. cos(y log r)+4y? sin(y log r)] —(— 1)"k1N Iil .
1472

[*=3y* +kiy?) cos(y log r)— (3y° + kiy—y) sin(y log r)]
__cos k.6
N,

Trrn(r’ 0) =

[(kt —2k?+kiy*+y*+ 1) cos(ylogr)

d
+(y*+y—yk3}) sin(y log r)]}-rX
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_ goEacos k0 * ,
TopnlT, 0) = 7Bl —v) JO {( 1) kl

.cos(y log r)+(kiy—y— y3) sin(y log r)]

(24)
co]svk 0[( +y2+k3y?) cos(y logr)

v3).

— (¥’ + y—kiy)sin(y log r)]}

ol 0) = 0 Bf J(= gy costyog

+(y*+ kiy? — y?) sin(y log 1)]+(— 1)”361N N,

k,sink,f

- [2y* cos(y log r) +(y* +kiy—y) sin(y log )] — N,

d
[2y? costy log 1)+ (kEy—y +*) sin(y Iogrn}%

M, = cos(f— 6) cosh(f + B)y + cos(f -+ 0) cosh(f — )y
M, = sin(f — ) sinh(f+ 8)y +sin(f + 6) sinh(f — 6y
sin{f + 6) cosh{f — 8)y — sin(f — 8) cosh(f + B)y
= cos(f — 0) sinh(f + 0)y — cos(f -+ 0) sinh(f — 8)y
N, = ysin 2fi+sinh 28y
Ny = [+ (kg + D257 +(ky — 1)7]

ky = (2n+ m/2p.

=X
([

Integrals of the form of (24) appear in literature in connection with other problems
in elasticity and are found to lend themselves to numerical treatment [e.g., 21-23] Some
of the integrals of (24) can also be evaluated in closed form by using contour integration
[24]

In a similar way, the Mellin transforms of the stresses for the anti-symmetric case
may be obtained as follows:

~ goEx & F, sin k0’
- r 1k, (p—1)(p+2).
O = B(I - V} ,,Z() H(p, ,8) [kz (p 2)2][( 1y 2(p )(P+ }

. sin(p—2)B sin pf —(— 1)"ky(p — 1)(p — 2) sin pf sin(p—2)0
— H(p, B)(k3 + p—2) sin k8],
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. GoEa F; sin k0 I
6""“/3(1—v),,§0 H(p,ﬁ)[kg_(p_z)z][( 1k,(p—1)(p—2).

.sin pBsin(p—2)8—(— 1k, (p— 1) (p —2) sin(p—2)8.
.sinp8+ H(p, f)(p— 1){(p—2) sin k, 0],

(25)
5, = qoEx 5 F, sin k0
" B(l—v),So Hp, Pk —(p—2)°]
. sin pf cos(p—2)0 —(— 1"k, p(p— 1) sin(p — 2)f3 cos pf
+H(p, B)(p— 1)k, cos k, 0],
H(p, p) = (p— 1) sin 2f—sin 2(p— 1)8,

= [~ r2+r’2> <rr')
Folp 1) = — S 5= ),
(2.1 ZKtJO e"p( aa ) \za) T

ky = (n+L)n/p.

[(=1kx(p—D(p—-2).

Again, it can be shown that 3 < Re(p) < 2 is the appropriate strip of regularity and
¢ = 1 may be chosen for the Mellin inversion integrals. Noting the similarity of (19)
and (25), the stresses for this case may also be expressed in terms of infinite integrals
similar to (22).

4. ASYMPTOTIC BEHAVIOR OF STRESSES FOR SMALL r

For r < 1, (19) and (25) may be inverted through the use of the residue theorem by
completing the contour in the half plane Re(p) < 1. If the behavior of stresses in the
vicinity of the apex of the wedge is of primary interest, we need to examine merely the
asymptotic behavior of these inversions for small values of r. The leading terms in the
asymptotic expansion of the stresses will be contributed by the residues at those poles
of 6;; which lie closest to the line Re(p) = ¢ = 1.

It can be shown that at the zeros of k? —(p—2)? the integrands in both, symmetric
and anti-symmetric cases, have no singularities except for B = n, n = 1, or p = 4, which
is only a simple pole. Hence, the remaining singularities will occur at zeros of G(p, f)
and H(p, ) for the symmetric and anti-symmetric cases, respectively, and may be obtained
from

G=(p—1)sin2f+sin2(p—1) =0, p=>¢i0,...

(26)

H = (p—1)sin2f—sin2(p—1)f = 0, p=YY,,. ...
The first zeros ¢, and Y, of G and H are shown in Fig 1 as a function of f. ¢, and ¥,
are the only singularities with positive real parts. As will be seen below, since the stresses
are of the form r~ %« r~¥x the remaining poles and the continuation of ¢, ¥, into the
negative range have no significance in the treatment of the singular behavior of the
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stresses, and hence are not displayed in Fig. 1. We note that p = 4 is the pole of &;; lying
closest to p = ¢ =1, ¢, and y, are either real or appear in complex conjugate pairs,
according to (26) they are symmetrically located with respect to p = 1 and hence in the
strip 3 < Re(p) < 3 the functions 6;(p) are regular (i,j = r, 0), as previously stated.

¥
05
0.4 /
V
i
0.3
0.2 - SYMMETRIC CASE
¢~- ANTI-SYMMETRIC CASE
o.l !
0
0.4 0.5 0.6 07 08 0.9 1.0

Bfn

FiG. 1. The zeros ¢, of G(p, f) and y of H(p, f) as a function of §.

In the symmetric case, for § = n the leading term will be contributed by the pole
= § for n = 1, the functions &;(p) have no singularities at the zeros of G(p), and hence
the residue theorem gives

_ Eugy _, 0 . L0
T"‘(r’e)_47r(1—v)r 0082 1 +sin 5

_ Eagy ., 50
Tgo, (7, 0) =2 (l—v)r cos 3 27
. Eagy 3 0
T,9,(r, 0) = 8l _v)r sin 8 cos 7
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Thus, from (22) we obtain

__Eoeqo (ﬁ) 9( .20 0
a,(r,6,t) = SR(I—V)KIr cos|{ 5| cos 5 1+sin -jf(t)+0(r)

T 38’) 30 0
a1, 6, 1) = e r— cos( 5 ) cos 2f(t)+0(r )

(28)

Eag, (38’) . g o
_—__—Ién(l—v)xtr 3 sm6cos-2~f(t)+0(r )

2kt {3 17
1= r@—r@,)?(a’ :{,a)

where y(a, x) is the incomplete gamma function.
For p < = the leading terms in the asymptotic expansions of stresses will be con-
tributed by the residue at the pole p = ¢, and from the residue theorem it follows that

T, 0) = h(r, 0)+0¢ %), (,j=r,0)

0',.9(?', 89 t) =

Tijnl

Eagor~
Bl —vig,

—(¢1—2) cos ¢, cos(¢p; —2)0]

Tonlr, 0) =

( 1Pki(dy — D{(@y +2) cos(¢; —2)B cos ¢,0

Thlr, 0) = ‘;:( “"') B0 ks (1 — 1)y — D cos 1 cos(y —2)0
—cos(¢; —2) cos ¢,6]
i1, 6) = g““"”) EooT T 1ky(hy ~ 1) by cos( —2)f sin ;0

— (¢, —2) cos ¢, sin(¢, —2)0]
= [k} —(¢;—2)*][sin 28+ 2B cos 2(¢, — 1)B] 29
ki = 2n+ )n/28.

Thus, the convolution integrals, (22), give the stresses as

_ v 1 T’zt o K — 2

o, = n=ZO et exp (— 4Kt> cos k,B'tx, f()+0(r %)

Gop = i 1 exp|— r cos k0t £,(t) +0(r~%2)
00 = & 2t P ant 10 Toon Jn

(30)
1 rr2 _
G, = Z 2t exp (— 4—,&) cos k; 015, f,(t) +0(r~%?)

n=0
+2
@1 kl ky+1: r )
4xt

L0 = 5+

r*det)® R IG 2+ K, /2) F
Mk, +1) 1
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where | F {a; ¢; z) is the confluent hypergeometric series.
Similarly, in the anti-symmetric case for r < 1, § < =, the stresses may be expressed
as

o = A4~ 1[0+ 2) s =2 sin
— (4~ 2) sin y, Bsin (1, ~20Th(e) + 0"
o = 99 1)y, = )sin o, sin(y — 26
Bi—) a1
—sin(y, —2)B sin ¥, 0JH(0)+0(-¥2)
o = 0 (s 2 sin ¥ cos —20
¥ 53{1 WV} ¥ 1 l 1 g

=y sinfiy —2)B cos y, O1(H) + 0(r~¥7)

/2 o /2 kaf2
h(t) = (4912 exp (—~-«) Y {{ I}"( 4&{) <;+—~2~)sm ko8 .

kU
.1F1(§+%~;k2 - )] | Tk~ ~21isin 28-28 cos 20, ~ D)

= (n+ D)r/p.

5. NUMERICAL RESULTS AND DISCUSSION

The comparison of the results given by (30} and (31) with those given in [25] and [26]
indicates that the form and the power of the stress singularities (ie. %, r "%} in plane
wedges are the same for mechanical and transient thermal loadings. For the infinite plate
with a semi-infinite cut and subjected to an instantaneous heat source, g, at t = 0,
r =r,8 = ¢, combining (28) and (31), the stress state in the neighborhood of the end of
the cut is obtained as

Opp = %cos g '}h( 1 (1 +sin §)+ Az(t)( sin §~2 tan 9)] +0(r%
H g ]
%o = cos 5 {3 s{t) cos? g--é;%g{t} sin 8:‘ +00% E2)

14,0 sin 0+ 4,03 cos 0—1)]+000)

1
Tpg == ;;;;COS 5
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where the stress intensity factors are given by

Ey 00336’ (3 rd)
90 OSN3 ant
2(1—v) (m")’}

P\ (43 2n+3 r?
-1 — i / -7, i

) '
2m(1=9) 4o (4rt)? expC—Qn (n—$)(n+3)

A4, =
(33)

Ay () =

In its , @ dependence, the stress field given by (32} is identical to the solution of an equiva-
lent elastic body under static loads {e.g. {27]).
For other wedge angles, the stress field around the apex may be expressed as

0i; = Ay(t, Br *Bif0)+ A,(t, Byr V' Cif(0) +0(r 2, r¥3)

where (the real parts of) ¢, and y,, that is, the powers of the singularity vary with
in accordance with Fig. 1 which indicates that for § < n/2 in the symmetric case and for
B < 0:715x in the anti-symmetric case, the stresses at r = 0 will be bounded. The curves
shown in Fig. 1 are identical to those found in [26] for the symmetric case and [25] for the
anti-symmetric case. However, the locations of the leading poles in the anti-symmetric
case for all values of f and p < 0 are at the zeros of H(p) and do not experience a distinct
change at f = 0-715% as found in [25] The significance of the angle 8 = 0:715% was
pointed out by Sternberg and Koiter in [25] It was found that 0-715x is the largest half-
wedge angle for which the classical solution for a wedge subjected to a concentrated
couple at the apex is valid. This type of breakdown of the theory is due to the fact that
for wedges with larger angles under concentrated thermal or mechanical loads, there are
two points of singularities—the apex of the wedge, r = 0, and the application point of the
load, r = v, 8 = . As r’ approaches zero, the stress intensity factors 4; and 4, go to
infinity and the solution becomes meaningless.*

Figures 2-8 show some of the numerical results. Figures 2-6 show the variation in
relative magnitude of the stress intensity factors as a function of § and the 6-dependence
of the stresses in the vicinity of the apex for small values of time. The direction for
maximum- g, remains to be # = 0 as wedge angle varies, however for maximum o,, the
angle goes from 6 = 70-5° to & = 90° as f§ goes from = to n/2. Figure 7 shows the variation
of ggr?t at § = 0 or, essentially, the stress intensity factor as a function of § and ¢}
Figure 8 shows the stress intensity factor in the case of f = = as a function of time.

Finally, from Fig. 1, we observe that in a plane wedge with a half-angle B,
07157 < B < m, the strength of the stress singularity for the symmetric loading is always
greater than that for the anti-symmetric loading and hence, from the view point of practical
applications, the symmetric stress state is by far the more critical one. Partly for this reason,
most of the numerical results given by the figures refer to the symmetric case.

* Note, for example, the problem of a cracked plate subjected to wedge loadings on the crack surface where
application points of the load approach the crack-tip. In this case, 4, ~ (r—r)"*and 4, - wasr - r.

tr' appearing on the abcissa of Figs. 7 and 8 should be considered as a constant in studying the figures.
Since they appear elsewhere in the expressions of A, and A4, the figures do not reflect the actual dependence of
Ay and A4, on 7' (see, for example, equation {33)).
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. 6. Stresses near the apex of a wedge (f = 120°)—symmetric temperature distribution
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Fic. 8. Time dependence of the stress intensity factor near the apex of a wedge (f = 180°)—symmetric
temperature distribution.
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Résumé—Le probléme thermoélastique transitoire sur surface plane d’une forme triangulaire infinie, soumise
a une source de chaleur instantanée, en un endroit arbitraire, y est considéré. Le probiéme est formulé en termes
de déplacements et les transformations de Mellin-Laplace sont employées pour la solution. Une représentation
intégrale réelle du champs d’effort est donnée. Une insistance particuliére est donnée & I’analyse du comporte-
ment singulier des efforts dans la région du sommet pour des grandes valeurs de Pangle 28. L’on a constaté que
pour § > n/2 dans le cas symétrique, et que pour § > 0,715% dans le cas anti-symétrique, le sommet est un
point de singularité pour les efforts. La puissance de cette singularité ainsi que la variation des efforts dans §
ainsi que la variation du facteur d’intensité d’effort (temps) est étudié, et quelques résultats numériques y sont
donnés.

Zusammenfassung—Das thermoelastische momentane Problem fiir einen unendlichen ebenen Keil, welcher
einer momentanen Wirmegquelle in einer willkiirlichen Auslegung unterworfen wird, ist erwogen. Das Problem
ist formuliert in Beziehung zu Verschiebungen und Mellin-Laplace Umformungen werden fiir die Aufiésung
verwendet. Eine Realintegral Darstellung des Beanspruchungsbereiches ist gegeben. Der hauptsichlichste
Nachdruck ist ant die Analyse der Singularititen der Beanspruchungen rings um die Scheite] fiir grosse Werte
des Keilwinkels, 28, gestellt. Es wird gefunden, das im symmetrischen Fall fiir # > /2 und im antisymmetri-
schen Fall fiir § > 0,715n der Scheitel ist ein Punkteiner Singularitit fir die Beanspruchungen. Die dies
Singularitit wie auch die Abhéingigkeit der Beanspruchungen von 8 und die des Beanspruchungs Intensitits-
faktors in Zeit wurden untersucht und einige zahlenmissige Ergebnisse sind gegeben.

Aberpaxr-—Q6cyxaacTcs npocTan NepexoaHas TepMOdJIacTHYeckas npobiema ans BeCKOHEYHOro XHHa,
MOABEPIHYTOr0 MTHOBEHHOMY MCTOYHMKY Telia B NMPOW3IBOABHOM MecTe. IMpobnema popMynupyercs B
YCNOBHAX TEPEMEIUEHUS U LISt PEICHHS TNPUMEHAIOTCA npespaiieHns Menmun-JTannaca (MELLIN-
LAPLACE). [laHo HacTosllu€e NOJHOE NpeAcTasietne o6NACTH HanpsxeHus. I 'naBHOE 3HAYEHME NpU-
naércs ananuiy cBoeobpa3HOro NMoBeACHUA HANDKEHHH BOKPYT BEPXYLIKH s OOnbLUIMX 3HA4eHuit yrna
ximua 28. Haligeno, 4ro B ciyyae cuMMeTpun s 8 > #/2 B B ciayuae accuMeTpuH s 8 > 0.715 =
BEPXYLIKA MPEACTABAAET CHUHIYJANPHYIO TOHKY ANS Hanpsokemit. Miyuaetrcs cuna HTOH CHHIYAADHOCTH,
TaKKe, Kak ¥ pasHoolpasue nanpsxesuit B B, PaKTOP HHTCHCHBHOCTH HAUPAXCHHA BO BPEMEHH H HaHsl
HEKOTODbIE YHCIOBbIC PE3YNBTATHI.



